

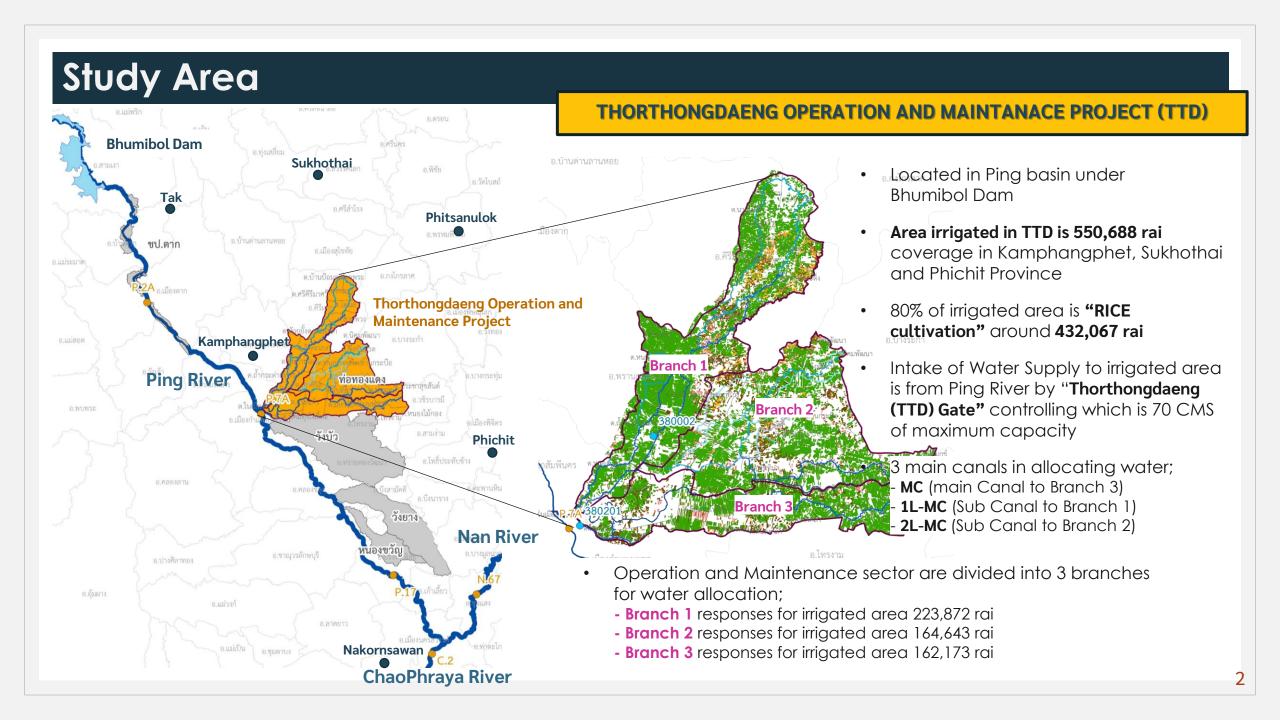
THA2022 International Conference on

Moving Towards a Sustainable Water and Climate Change Management After COVID-19

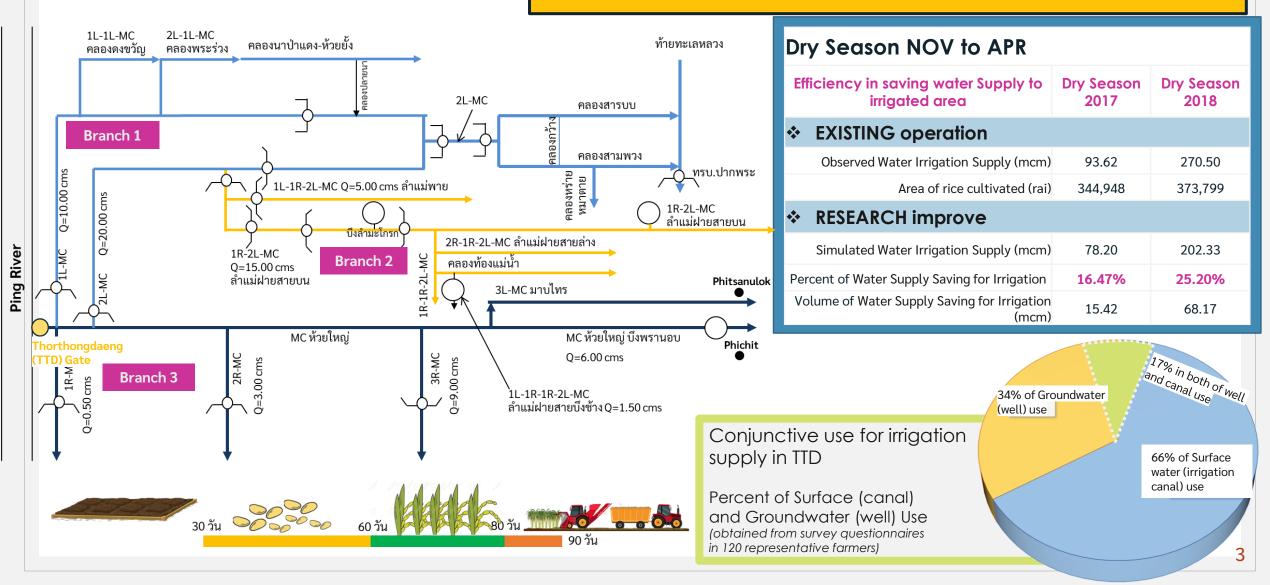
A Development of Soil Moisture Monitoring System for Increasing Irrigation Supply Efficiency Applied in Thorthongdaeng Operation and Maintenance Project, KAMPHANGPHET, THAILAND

Dr.Panuwat Pinthong

Faculty of King Mongkut's University of Technology North Bangkok Member of Thai Hydrologist Association


Krotsuwan Phosuwan

Senior Researcher Irrigation Development Institute, Royal Irrigation Department


Supitcha Thaikheaw

Senior Researcher King Mongkut's University of Technology North Bangkok

Existing Condition and Research Improve

COMPARISON OF EXISTING & RESEARCH OPERATION FOR "RICE cultivation"

Water Issue in TTD Irrigated area

Water Supply Delivering Cycle

With no data support, Water Allocation plan did not match with actual demand for cultivation properly
 Difficulty in water allocation corresponding with TIME and QUANTITY of crop demand requirement

Drought Situation in Agricultural Sector

- Lack of irrigation water supply
- Rainfall pattern change due to climate condition

Stakeholders and farmers CONFLICTION of water use

- Water use contention between farmers in Upstream area / Midstream area and Downstream area of irrigation network

Manual in Data Monitoring and Data Processing

- There is no automatic monitoring system for data processing
 - Decision making for water distribution becomes trouble with no data support.
 - A lot of complexity in water allocation Especially, during DROUGHT and FLOOD crisis management

Loss/ leakage in water flow through natural Canal

- TTD Operation Project supplies water to irrigated area through concrete canal in upstream area and natural canal in mid / downstream area

AI Based Mathematical Model integrated with Sensor

LINKAGE OF SENSOR TECHNOLOGY AND AI MATH MODELING

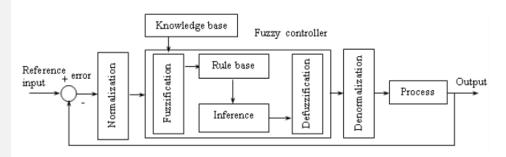
Automatic Gate Controlling

Water Level Monitoring

Soil Moisture Monitoring

SMT0301

Al Based Mathematical Modeling

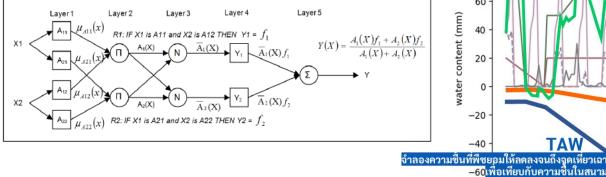

- Monitor Water level and Soil Moisture Changed via Website and Line Application
- Evaluate Crop Water Demand in respect to real-time Soil Moisture Monitoring
- Forecast and Simulate Water Flow through Canal under existing situation of Water Supply
- **Suggest Water Allocation Plan**
- Recommend Water Operation Plan
- Link to Automatic Gate Controlling via Website

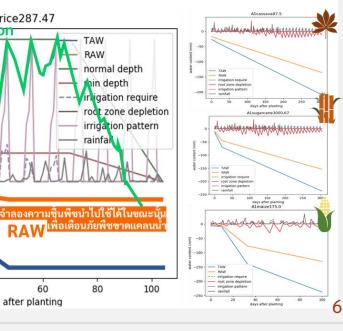
Methodology

GA-Neurofuzzy in Forecasting and Allocating Water Supply

INTEGRATION OF IoT SENSOR based AI and Mathematical Modeling

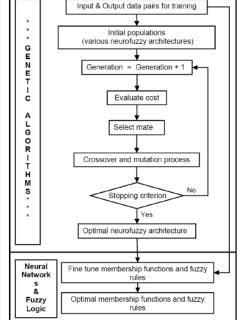
Rainfall

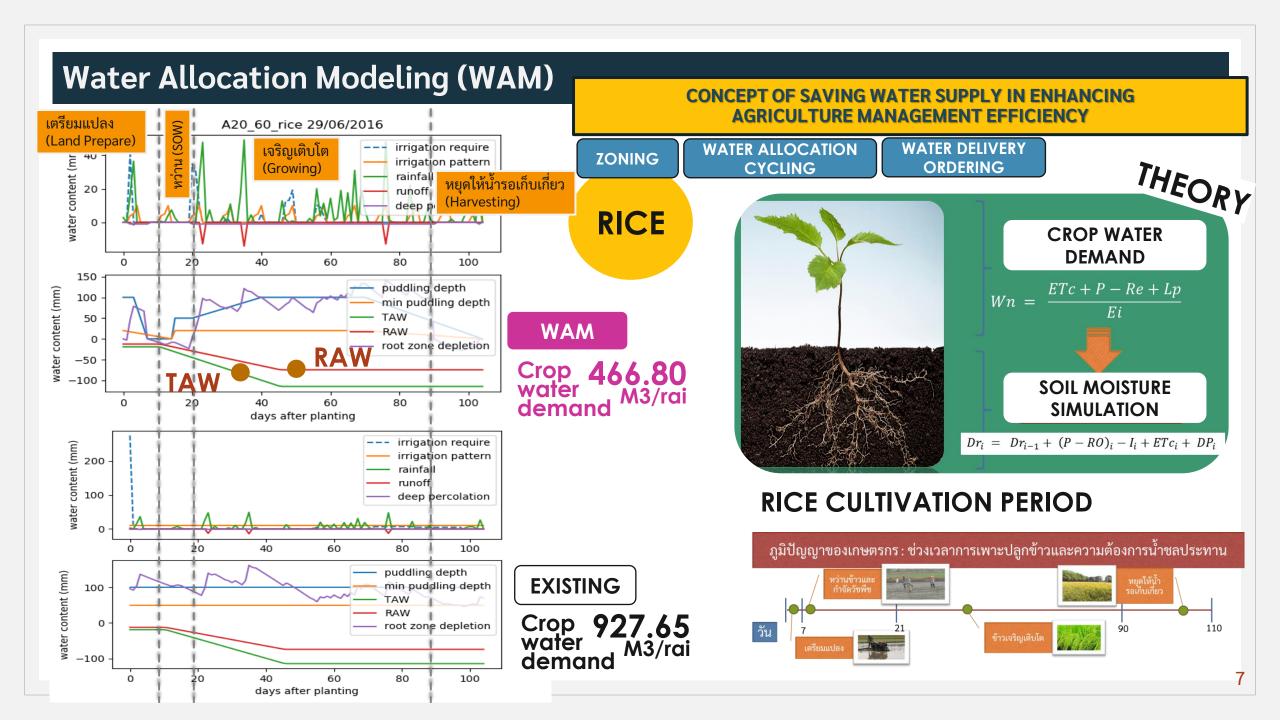

- River Runoff
- Reservoir Release
- Water Level
- TTD Intake Water Flow
- Crop Water Allocation



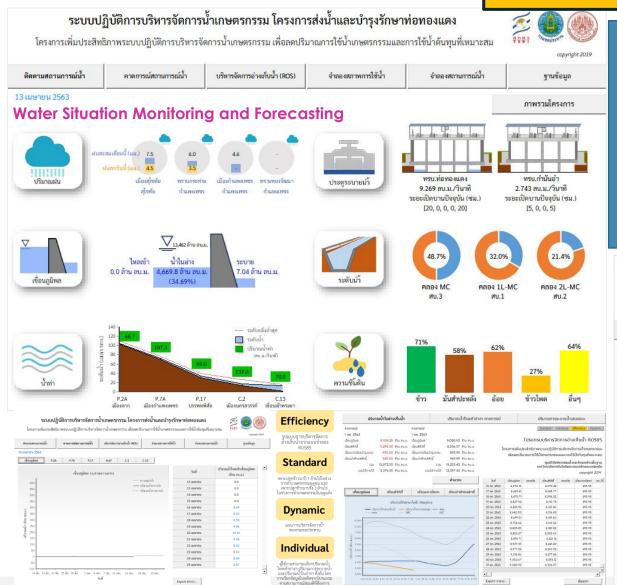
A1rice287.47 Root Zone Depletion 20 zones of allocatina cycle corresponding to RAW พื้อคำนวณปริมาณการส่ง same canal water use 80 normal depth nin depth 60 igation require root zone depletion irrigation pattern rainfa

20


-20

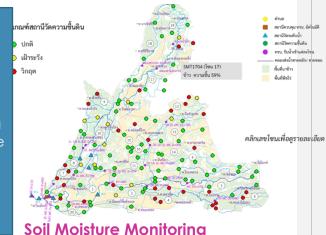


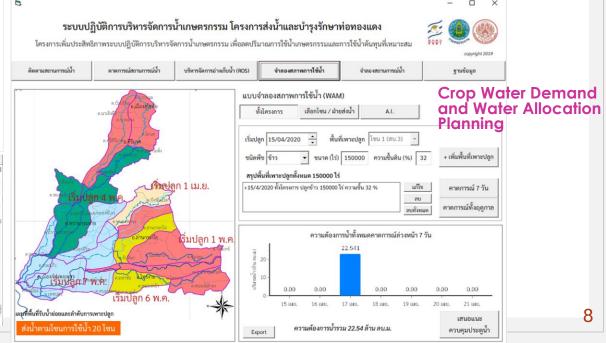
80


days after planting

Output

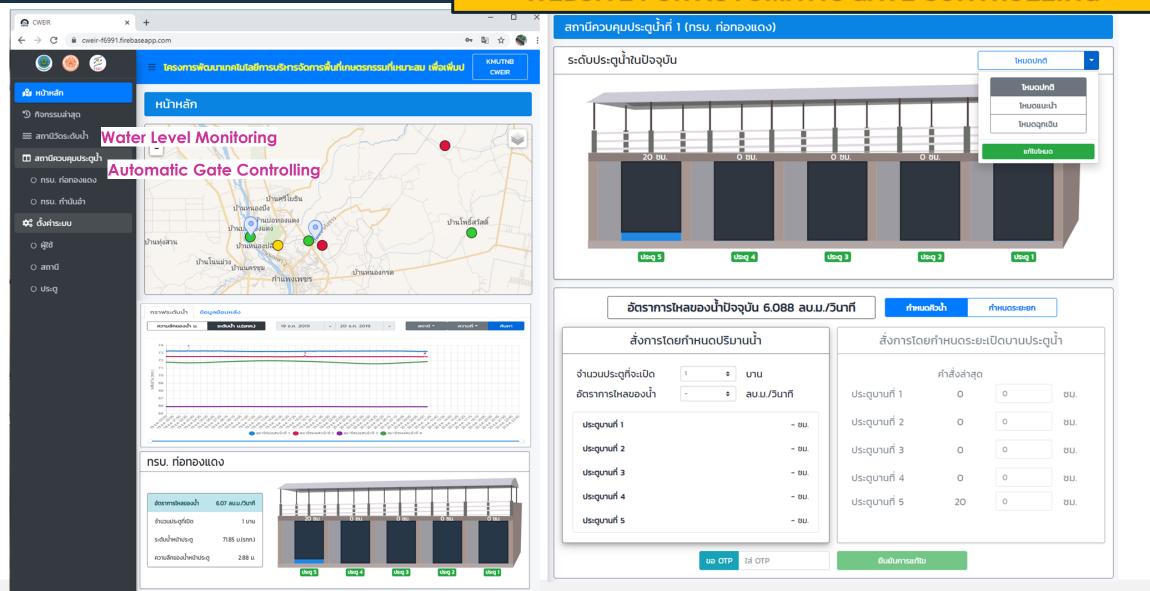
COMPUTER PROGRAM FOR SUITABLE WATER ALLOCATION PLAN




Crop Water Demand Modeling in period planning of

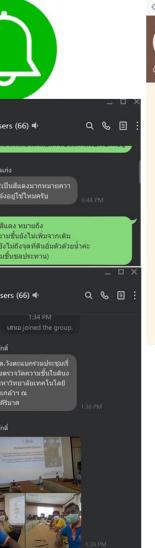
- 7 days ahead
- Seasonal planning

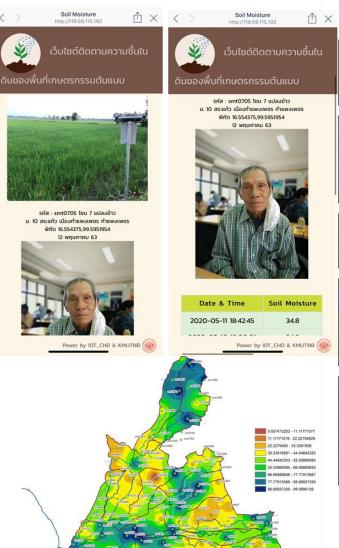
Which is capable of


- Planning in overall TTD cultivated area
- Planning in separate or individual zone and branch of water distribution
- Suggesting proper gate controlling operation to allocate water to crop cultivated area under supply forecasting

Output


WEBSITE FOR AUTOMATIC GATE CONTROLLING




Output

LINE NOTIFY AND WEB APPLICATION TO FARMERS

Daily Soil Moisture Reporting and Warning to Farmers in making decision during their cultivation

	โซน 11	
รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt1101	สำเนา นาคสวัสดิ์	76.99%
smt1102	ประเทือง เกตุทอง	67.92%
smt1103	ราตรี หงษ์ทอง	65.44%
smt1104	เรวัตร คนกลียร์	63.55%

รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt1201	บุพงษ์ พลเก่ง	62.87%
smt1202	สมใจ กลิ่นอำพัน	99.03%
smt1203	สมหวัง พรมมี	66.62%
smt1204	ประชุม บดีรัฐ	72.76%
smt1205	วัง ศิริพรหม	76.17%
smt1206	ดาว สระทองคำ	72.76%

	โซน 13	
รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt1301	บุญเลิศ บุ่มเกลี้ยง	100.00%
smt1302	สมนึก พูลทอง	100.00%
smt1303	ณัฐชัย หนองหลวง	93.02%

รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt1401	สายัณห์ บำรุงเชื้อ	100.00%
smt1402	ปราโมทย์ เพชรสี	77.44%
smt1403	พล เชื้อพงษ์	70.59%
smt1404	มัชฒิมา เกษี	**
smt1405	ขาว เพ็งสว่าง	100.00%
smt1406	อนันต์ ขาวนายก	100.00%

รหัสสถานี	เกษตรกร	ความขึ้น (%)
วทยยยาเก	U800-000-000-00	H3111013 (70)
smt1501	เฉลิม พลอาชา	55.56%
smt1502	ถนอม ขันทอง	100.00%
smt1503	วราภรณ์ โพธิ์คะขา	69.14%
smt1504	สว่าน ขอนทอง	73.87%
smt1505	สมมาตร พลอาจ	100.00%
smt1506	นวล ไพโรจน์	80.07%
smt1507	ขวัญใจ สวยทอง	22.79%
smt1508	ธนะ นครจันทร์	59.70%

	โซน 16	
รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt1601	อุไร หนองหลวง	100.00%
smt1602	ดอกแดง มาน้อย	88.07%
smt1603	ลอม บัววัน	75.62%

โซน 17			
รหัสสถานี	เกษตรกร	ความชื้น (%)	
smt1701	พนม โตนคทอง	30.76%	
smt1702	ผู้ใหญ่คำรง	30.57%	
smt1703	ผู้ใหญ่อนนท์ ประถมอินท์	34.66%	
smt1704	ชิต เกิดข้าง	47.71%	

โซน 18		
รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt1801	ธกฤธณัช เสือแฝง	100.00%
smt1802	กำนันจรุน สุขแป็น	66.01%
smt1803	ประเภท โทนทอง	63.71%
smt1804	เคช	65.02%
smt1805	วิชิต ดีหนอ	67.32%
smt1806	สังวร คำเบิก	67.65%
smt1807	ปัญญา สุขแป้น	29.90%

โซน 19		
รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt1901	ດວີຄ ອູ່ກຸ້ນ	100.00%
smt1902	иมุก	86.82%
smt1903	ล่ำ ปัญญาเครือ	68.26%
smt1904	ธเนตร สอนลบ	100.00%
smt1905	ประสิทธิ์ นวลจีน	61.42%
smt1906	สมชาย	58.98%

โซน 20		
รหัสสถานี	เกษตรกร	ความขึ้น (%)
smt2001	ไพร ร่มโพธิ์	96.00%
smt2002	สวิง พลับผล	100.00%
smt2003	สุมารี ข้างแก้ว	82.60%
smt2004	อำพัน	100.00%

Conclusion of Research Output

Computer Desktop

Website

Mobile Application Mathematical Modeling System of Utilizing Water Supply for Enhanced Agriculture Management

- Decision Support Tool for water allocation and irrigated farm management
- ☐ Monitoring and Reporting Hydrological changed on farm scaled (Water level, soil moisture) in agricultural area
- Program for evaluation irrigation water and crop demand requirement

Sensor Technology

Prototype Irrigation Area Development of
Technology
for Improved Water
management in Irrigation
Projects

- Sensor Technology for Irrigation Water management
 - Automatic Gate Controlling 2 stations
 - Water Level Observation and Monitoring 8 stations
 - Soil Moisture Monitoring 120 stations
- Data Processing Network System
- Website for Gate Controlling Operation System